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Abstract

Based on a non-linear strain—displacement relationship of a non-rotating twisted and open conical shell on thin shell
theory, a numerical method for free vibration of a rotating twisted and open conical shell is presented by the energy
method, where the effect of rotation is considered as initial deformation and initial stress resultants which are obtained
by the principle of virtual work for steady deformation due to rotation, then an energy equilibrium of equation for
vibration of a twisted and open conical shell with the initial conditions is also given by the principle of virtual work. In
the two numerical processes, the Rayleigh-Ritz procedure is used and the two in-plane and a transverse displacement
functions are assumed to be algebraic polynomials in two elements. The effects of characteristic parameters with respect
to rotation and geometry such as an angular velocity and a radius of rotating disc, a setting angle, a twist angle,
curvature and a tapered ratio of cross-section on vibration performance of rotating twisted and open conical shells are
studied by the present method.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Blades are often found in the aerospace, mechanical and automobile industries and others, such as
turbofans and aerial propellers, it is very important for safety and life of machinery to determinate their
dynamic characteristics accurately because they rotate at high speed. However it is a hard work and im-
possible to obtain dynamic solutions exactly as the result of their complex configurations such as twist,
curvature, a non-uniform cross-section and a non-uniform thickness, which had attracted a lot of re-
searchers’ attention to the studies of computation models and analysis methods, such as beam and plate
models, and Galerkin, Rayleigh—Ritz and finite element methods. Beam, which is a simple model of blades,
was often used in study on the dynamics of blades in past (Rao, 1973, 1977, 1980) and is also used in
engineering now under considering non-linear vibration, shear deformation, non-uniform cross-section,
pre-twist, coupled vibration and concentrated mass (Hamdan and Al-Bedoor, 2001; Lin and Hsiao, 2001;
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Rao and Gupta, 2001; Surace et al., 1997; Yoo et al., 2001). Plate and shell are more approximate models of
blades, but there was a little work done, such as rotating twisted plates by FEM using two different shape
functions (Ramamurti and Kielb, 1984), rotating pre-twisted and tapered plates also by FEM of triangular
shell elements with three nodes and eighteen degrees of freedom (Sreenivasamurthy and Ramamurti, 1981),
shells with camber and twist on shallow shell theory by Ritz method (Leissa et al., 1982), rotating thin
twisted plates by the Rayleigh-Ritz procedure (Tsuiji et al., 1995) and twisted cylindrical thin panels on
general shell theory (Hu and Tsuiji, 1999), where the effects of parameters of the rotating systems on vi-
bration characteristics were studied.

The main purpose in this paper is to develop an numerical analysis method for vibration of a rotating
twisted and open conical shell based on the study of non-rotating twisted and open conical shells (Hu et al.,
submitted for publication). Considering a non-linear relationship between strains and displacements of the
conical shells on thin shell theory and the influence of rotation, a numerical analysis of vibration is carried
out by the energy method and the Rayleigh-Ritz procedure with algebraic polynomials in two elements as
admissible displacement functions. There are two processes in present method, first, under the effect of
rotation the deformation and the stress resultants in a twisted and open conical shell are solved by the
principle of virtual work for steady deformation; second, an energy equilibrium of equation is presented by
the principle of virtual work for vibration considering the initial quantities induced by a centrifugal force.
The convergent property and the accuracy of the analysis method are studied. The effects of parameters of
this system such as an angular velocity and a radius of a rotating disc, a setting angle, twist, curvature and a
tapered ratio of cross-section on vibration characteristics of rotating twisted and open conical shells are
investigated by the present method.

2. Theoretical analysis

A system constructed by a rotating disc with a radius xp, which is assumed to be rigid, and a twisted and
open conical shell fixed on the periphery of the disc at an orientation angle ¢ called a setting angle is shown
in Fig. 1. Where a rectangular right handed Cartesian co-ordinate system is denoted by (X, Y, Z;) which is
fixed in space with O, at the center of the rotating disc and another right handed Cartesian co-ordinate
system is depicted by (x,y,z) with a set of unit vectors (i1,#,,i3) which rotates around the Z-axis at a
constant angular velocity Q. The x- and y-axes are taken in a lengthwise direction of the shell and a
chordwise direction of an arc, respectively, the Z-axis in a radial direction where an arc is divided from the
middle, and the position of the origin O is defined by a distance e (e = f'a, f’ is a constant and a is a radius
of an arc on an arbitrary cross-section) apart from the point O;. The configuration of the twisted and open
conical shell is explained by the following, ay and a, are average radii of arcs at two ends of the conical shell
and their corresponding lengths of the arcs are denoted by b, and b;, respectively, f is a subtended angle

e
:ﬁwo

O

Fig. 1. A geometry of rotating twisted and open conical shell.
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which is a constant for any cross-sections along the lengthwise direction, / and ¢ represent a length and a
thickness, respectively, and & is a twist ratio at which the conical shell is twisted round the x-axis and the
twisted deformation is denoted by a twist angle K at an end of the conical shell defined as K = &l.

2.1. Strain under rotating effect

It is assumed that the displacement components of a point in a middle surface of the thin conical shell are
u, v and w, respectively. To an arbitrary point which is in normal direction of the middle surface at a
distance z, its displacement components U, V and W, and the displacement vector I' can be written by (Hu
et al., submitted for publication),
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where the subscripts (), and ( )79 denote partial differentiation with respect to x and 6, respectively, and
the variables in the equations are defined in Appendix A. The engineering strains with respect to a local

orthogonal co-ordinate system (&,n,{) consist of the linear and non-linear parts as given by Hu et al.
(submitted for publication) or

8¢ &5 el GG,

' o Lr) o
8,7,] = 8711‘17 + 85;;1 = 1 _méZGU—’—EU G(}G(.) U7 (2)
Ten Ve Ven : G G,

where the matrices Z, G and U and G, and G, are
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and the non-zero elements in matrix G are defined in Appendix B where 455(0) and 4520) are
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U0, 70 and w© are the initial deformation components produced by centrifugal forces.
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All the quantities in above equations are dimensionless because the following dimensionless indices are
introduced,

v w
U Z
/

sz W:
) 17

la p,x :p,xl> q;c :q,xl~ (5)
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According to Eq. (2), the relationship between strains and stresses can be written as
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where E and v indicate Young’s modulus and Poisson ratio, respectively.

2.2. Initial deformation by centrifugal force

The thin conical shells are studied in this paper, it could be assumed that the centrifugal force is a
constant throughout the thickness and Coriolis effect is neglected. Therefore, an arbitrary point in the
deformed twisted and open conical shell can be expressed by a position vector r as follows:

p T
u—=w
T g .
o +x . sin 7
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hu — vsin 0 + W

The centrifugal force F per unit volume in the conical shell which is rotating at a constant angular
velocity € is given by

. Xo +Xx r
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where Y = ¢ + kx.
For the twisted and open conical shell applied the force, the following energy equilibrium can be ob-
tained by the principle of virtual work, namely,
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Substituting Egs. (1), (2), (6) and (8) into Eq. (9), and integrating with respect to z, then readjusting the
equation yield

0'1(7?7) and 7: ' denote the initial stresses produced by the centrifugal force, and p is a density of a
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where the matrix D is defined as the following,
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the initial stress resultants are
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and the indices in Eq. (10) are defined by
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where
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For a demand on studying the effects of parameters of the system, the following non-dimensional form is
produced by multiplying Eq. (10) with /2/D, namely,
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(16)
and the dimensionless parameter 4 is a reference frequency parameter of vibration.

With the purpose of the Rayleigh—Ritz procedure applied to the principle of virtual work in this paper,
the dimensionless displacement components U, V and W are assumed as two-dimensional algebraic
polynomial functions of X and 0, which satisfy the geometric boundary conditions employed at an end of
the twisted and open conical shell (X = 0) which is fixed to the periphery of the rotating disc, namely,
U=0,7V=0,W =0 and 0W /30X = 0, they are given by

Ny My Ny My Nw My

U=>">axo, v=> Y xe, w=> > c x"0, (17)
=0 =0

i=1 k=1 m=2 n=0

where a;, b}, and ¢, are unknown coefficients.

Substituting Eq. (17) into Eq. (15) and integrating over the surface area of the conical shell, then taking
the variation of the equation with respect to coefficients a;;, b, and ¢, according to the Rayleigh-Ritz
procedure yield the following governing equation,

Ay An A a P,
An Ax|{b ;=S P55, (18)
Sym. Az d Ps

where A4,;(i,j = 1,2, 3) are stiffness matrices, and P;(i = 1,2,3) are force vectors.
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It is known that the unknown coefficients a;;, b}, and c;,, can be solved from Eq. (18), therefore, the initial

mn

deformation and the initial stress resultants can be obtained by Egs. (17) and (16).
2.3. Free vibration of rotating conical shells

Under the conditions of the initial deformation and the initial stress resultants, the principle of virtual
work for free vibration of a twisted and open conical shell can be written as
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where o represents an angular frequency of vibration.
Substituting Egs. (1), (2) and (6) into the above equation, integrating with respect to z and multiplying
I?/D yield a non-dimensional equation given as the following,
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where dimensionless 4 is a vibration frequency parameter defined by
~12(1 =) par?
N ER '
By employing the Rayleigh—Ritz procedure with algebraic polynomials as displacement functions like

Eq. (17), a set of Ny x My + 1)+ Ny x (My + 1)+ (Ny — 1) x (My + 1) homogeneous equations are
obtained from Eq. (20),

Y (21)
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The requirement that the determinant of the set must vanish for a non-trivial solution provides another
algebraic equation called the eigenfrequency equation, or

All _/12311 AIZ_/IzBlZ A13
Ay — 1’By A =0, (23)
Sym A33 — )uzB33

where B;;(i,j = 1,2, 3) denote mass matrices.

As aforementioned it is known that the numerical method includes solving the initial deformation and
the initial stress resultants from Eq. (18), and solving the eigenvalues and eigenvectors of vibration from Eq.
(23), which is an iterative procedure because Eq. (18) is a non-linear equation. Therefore, a criterion is
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necessary for the procedure control. Here, the frequency parameters A are considered as a controlled
quantity which satisfy the following equation,
|A7D — 9]

where the subscript i denotes the ith vibration mode and the superscript j denotes the jth iteration.

3. Numerical results and analyses

In the numerical analysis method for vibration of rotating thin conical shells, numerical integration is
one of important operation. According to our knowledge and the experience of this kind of problem,
Gauss—Legendre method with 16 integration points is adopted in the paper. Another important thing is the
proper numbers of terms in the three displacement functions which is investigated in next. Poisson ratio v is
0.3.

3.1. Convergence of frequency parameters 1.

An example of a rotating disc with a radius X, = 2.0 and an angular velocity Q = 1.0, and a rotating
twisted and open conical shell fixed on the disc with a setting angle ¢ = 45° is considered, where the
geometric parameters of the conical shell are given as the following: a thickness ratio by/¢ = 25, an aspect
ratio by/! = 0.5, a tapered ratio of cross-section o = 0.6 defined as « = b; /by, a subtended angle f = 60°, a
twist angle at a free end K = 60°, and the convergence against the numbers of the terms or the powers of the
variables in the displacement functions is investigated. From Eq. (17) it is known that those displacements
are two-dimensional functions and the numbers of terms in them are decided by the maximum powers of X
and 0, respectively. There are no constraints for the maximum powers or the numbers of terms in the three
functions. But for simplicity in this paper, it is assumed that the maximum powers of two variables in U and
V functions are the same, because they are in-plane displacement components, or Ny = Ny and My = My.
The results are given in Table 1, which are obtained after fourteen iterative calculations.

To the first ten frequency parameters in the table, it is known that the lower frequency parameters
converge fast than the higher ones and a good rate of convergence is obtained as the maximum powers of X

Table 1
Convergence of A; for various number of terms in displacement functions (by/t = 25, by/l = 0.5, 0. = 0.6, f = 60°, K = 60°, ¢ = 45°,
X, =20, Q=1.0)

Ny, My 7,6 7,7 7,7 7,7 8,7 8,7

Ny, My 7,6 7,7 7,7 7,7 8,7 8,7
Ny, My 8,7 8,7 8,8 9,8 8,8 9,8
Terms 49/49/56 56/56/56 56/56/63 56/56/72 64/64/63 64/64/72
1 9.4108 9.4936 9.4105 9.4090 9.4096 9.4083
2 27.947 28.379 27.946 27.941 27.940 27.936
3 47.252 47.538 47.251 47.243 47.242 47.236
4 71.986 73.067 71.982 71.978 71.963 71.950
5 101.41 102.98 101.41 101.40 101.32 101.30

6 117.18 117.73 117.17 117.15 116.95 116.91

7 136.51 136.96 136.48 136.44 135.81 135.72

8 157.74 157.92 157.69 157.64 157.04 156.90

9 189.93 187.83 189.88 189.72 187.15 186.80
10 205.67 203.96 205.64 205.57 203.21 202.89
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Table 2
Comparisons of frequency parameters /; for rotating cylindrical thin panels (by/f = 20, by/l = 0.5, o = 1.0, ¢ = 0°, X; = 0.0, Q=038)
Method K =0° K = 60°
p=30° p = 60° B =30° B = 60°
Ref. Present Ref. Present Ref. Present Ref. Present
1 6.2984 6.2977 9.6696 9.6677 4.8728 4.8865 6.2134 6.2030
2 15.393 15.393 15.560 15.562 17.230 17.258 19.393 19.391
3 32.141 32.139 49.260 49.254 31.351 31.246 36.144 35.951
4 49.324 49.324 50.770 50.770 52.177 52.178 54.311 54.339
5 57.471 57.457 57.628 57.614 75.390 75.175 76.140 75.843
6 78.307 78.303 90.201 90.200 87.821 87.787 91.338 91.266
7 92.972 92.972 100.06 100.05 94.268 94.135 105.91 105.35
8 95.100 95.098 108.40 108.39 109.40 108.99 109.19 109.02
9 125.51 125.50 126.99 126.98 131.37 131.06 135.39 134.72
10 140.89 140.31 167.51 166.05 144.15 143.58 161.17 159.62

Ref. denotes the reference (Hu and Tsuiji, 1999).

and 0 are 8 and 7 in U and V functions, respectively, and 9 and 8 in W function, where the maximum error
in the higher frequency parameters is <0.2%. Herein, those coefficients are utilized in the following ana-
lyses.

3.2. Comparison with previous method

As we known there were no researches on rotating twisted and open conical shells, so a rotating twisted
cylindrical thin panels with the following parameters: by/t = 20, by// = 0.5, o = 1.0, K =0° and 60°,
B = 30° and 60°, a setting angle ¢ = 0°, a radius X; = 0.0 and an angular velocity Q = 0.8 is considered for
demonstrating the practicability and the accuracy of the present method. The first ten frequency parameters
obtained by the present method are compared with those in a reference (Hu and Tsuiji, 1999) shown in

Table 2. It can be seen they have a good agreement because the maximum difference between them is <1%.

3.3. Effects on vibration characteristics

The effect of a subtended angle f for rotating twisted and open conical shells with various twist angles
K = 0°, 30° and 60° on vibration frequency parameters A is investigated, which is shown in Table 3. It is
known that, for a given K, the frequency parameters increase when the f§ increases, because the curvature of
conical shells increases as the f§ becomes large but the length of arcs does not change, which leads the
stiffness of the shells to increase. The variations of 4 are great for the lower modes and the lower symmetric
modes, the maximum variation is corresponding to the first mode. In the case of K = 0° when the f§ changes
from 30° to 90°, the variations of the frequency parameters corresponding to the first (mode 1) and second
(mode 3) bending vibration modes are 97.87% and 88.33%, respectively, but there are only 3.96% and
19.15% for the first (mode 2) and second (mode 4) torsional vibration modes, respectively, for instance. As
the twist angle K increases the variations for the most of frequency parameters tend to decrease due to
coupled vibration arising out of twist, especially for the lower ones. For an example, the variations of the
first 4 are 97.87%, 78.34% and 54.25% in the cases of K = 0°, 30° and 60° as the f varies from 30° to 90°.

Table 4 shows the variations of frequency parameters A versus a tapered ratio of cross-section o for
rotating open conical shells with by/t = 25, by/I = 0.5, f = 60°, Q = 1.0, X, = 1.0 and ¢ = 0°. For un-
twisted rotating conical shells, the frequency parameters decrease with the tapered ratio o increasing except
those which represent the mode shapes of vibration varying with the change of the «, such as the third and
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Table 3
Effects of f and K on frequency parameters /; (by/t = 25, by/l = 0.5, a = 0.6, ¢ = 0°, X5 = 1.0, Q=1.0)
K=0° K =30° K = 60°
B =30° B = 60° B =90° B =30° B = 60° B =90° B =30° B = 60° B =90°
1 9.0795 13.315 17.966 8.2540 11.249 14.720 7.2918 8.9381 11.249
2 23.912 24.320 24.860 27.106 28.316 29.102 22.057 27.169 30.491
3 36.641 56.698 69.005 33.711 46.995 58.722 43.970 47.352 53.747
4 64.574 66.456 76.938 68.149 72.823 77.593 62.177 71.158 76.783
5 78.995 79.468 80.391 82.226 87.134 92.181 100.02 101.44 103.63
6 86.035 122.25 129.92 89.641 113.79 127.95 102.20 116.83 129.18
7 117.06 122.58 141.10 122.07 130.79 142.31 127.47 135.50 145.75
8 149.76 154.74 164.41 150.80 155.82 165.00 154.87 156.77 163.95
9 154.53 192.93 206.46 154.22 188.47 198.58 163.91 186.93 190.32
10 183.89 196.98 215.57 187.03 198.83 219.97 193.92 202.56 221.54
Table 4
Effects of o and K on frequency parameters /; (by/t = 25, by/l = 0.5, B = 60°, ¢ = 0°, X; = 1.0, Q = 1.0)
K =0° K = 30° K = 60°
=02 o=10.6 a=1.0 o=02 o=10.6 a=1.0 a=02 o=10.6 a=1.0
1 15.273 13.315 12.497 13.604 11.249 9.9405 11.181 8.9381 7.8007
2 40.599 24.320 16.621 44.660 28.316 20.544 34.834 27.169 21.839
3 52.466 56.698 53.520 47.619 46.995 45.501 59.606 47.352 42.428
4 89.495 66.456 59.314 96.893 72.823 61.127 90.894 71.158 59.599
5 102.03 79.468 71.924 104.94 87.134 78.530 112.68 101.44 83.811
6 112.88 122.25 90.873 109.06 113.79 92.494 121.53 116.83 97.947
7 168.72 122.58 105.96 173.22 130.79 104.98 174.16 135.50 112.57
8 184.24 154.74 120.06 183.82 155.82 121.09 188.12 156.77 123.83
9 215.77 192.93 133.43 212.19 188.47 138.05 210.61 186.93 144.85
10 254.73 196.98 175.25 254.50 198.83 167.80 252.55 202.56 165.31
Table 5
Effects of ¢ and K on frequency parameters /; (by/t = 25, by/I = 0.5, o = 0.6, B = 60°, X, = 1.0, @ = 1.0)
K=0° K =30° K = 60°
¢ =0° ¢ =45° ¢ =90° ¢ =0° ¢ =45° ¢ =90° ¢ =0° ¢ =45° ¢ =90°
1 13.315 13.096 12.875 11.249 10.916 10.697 8.9381 8.4797 8.3977
2 24.320 24.128 23.913 28.316 28.051 28.313 27.169 27.153 27.150
3 56.698 56.657 56.650 46.995 46.963 46.815 47.352 47.328 47.755
4 66.456 66.399 66.309 72.823 72.789 72.887 71.158 71.200 71.183
5 79.468 79.513 79.534 87.134 86.939 87.695 101.44 101.56 102.03
6 122.25 122.19 122.19 113.79 113.74 113.90 116.83 116.94 117.38
7 122.58 122.63 122.62 130.79 130.73 130.96 135.50 135.51 135.69
8 154.74 154.69 154.65 155.82 155.74 155.83 156.77 156.80 156.98
9 192.93 192.93 192.92 188.47 188.38 188.72 186.93 187.02 187.49
10 196.98 197.02 197.05 198.83 198.86 199.00 202.56 202.73 202.82

sixth 4. For rotating twisted conical shells, the frequency parameters A remain the tendency with the o and
the tendency becomes stronger as the twist angle K increases.

The existence of a setting angle ¢ for a rotating twisted and open conical shell causes coupled vibrations,
but there are symmetric and anti-symmetric mode shapes in both cases of ¢ = 0° and 90°. From Table 5, it
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can be seen that only the first frequency parameter A shows the decrease monotonously as the ¢ increases
for the conical shells with different twist angles, which will become large as the angular velocity increases.
The effects on the others are complicated due to the coupled vibrations induced by the setting angle ¢ or the
twist angle K.

The radius X; of a rotating disc is also an important parameter in a rotating system, Table 6 provides the
relationship between the frequency parameters A and the radius X; for given conical shells with and without
twist. All the first ten A increase with the increase of the X for the rotating untwisted conical shell, and most
of the 4 remain the tendency for the rotating conical shell subjected twist deformation. For a given K, the
variations of A due to the radius X; are greater for the lower modes than for the higher ones, specially for
the first 1. Also, it can be seen that the first 4 decreases as the twist angle increases and the variation tends to
decrease with the radius X increasing, they are 59.29% and 33.26% in the cases of X, = 0.0 and 4.0, res-
pectively, for instance.

Table 7 gives the effect of an angular velocity Q on the frequency parameters A of twisted and open
conical shells. It is known that the increase of the Q makes all the / increase, because the centrifugal forces
increase with the angular velocity Q increasing, which leads the initial deformation and the initial stress
resultants to increase then the stiffness of the conical shells increases. Comparing with the frequency pa-
rameters of non-rotating twisted and open conical shells, the variations of /4 increase greatly with the Q
increasing, they are greater for twisted conical shells than for untwisted ones and also for the lower modes
than for the higher ones.

Table 6
Effects of X; and K on frequency parameters 4, (by/t = 25, by/l = 0.5, 2« = 0.6, f = 60°, ¢ = 0°, Q = 1.0)
K=0° K = 60°
Xo=00 Xo=10 X;=20 X;=30 Xo=40 X;=00 X,=10 X,=20 X;=30 X,=40
1 12.644 13.315 13.953 14.563 15.146 7.9376 8.9381 9.8240 10.627 11.366
2 23.743 24.320 24.879 25.422 25.953 26.301 27.169 27.955 28.676 29.342
3 55.960 56.698 57.428 58.147 58.858 47.579 47.352 47.284 47.315 47.410
4 65.566 66.456 67.326 68.176 69.010 70.301 71.158 71914 72.603 73.245
5 79.453 79.468 79.486 79.507 79.529 101.75 101.44 101.21 101.03 100.87
6 121.04 122.25 123.44 124.52 125.47 116.93 116.83 116.85 116.94 117.07
7 121.59 122.58 123.56 124.61 125.77 135.18 135.50 135.80 136.07 136.33
8 154.44 154.74 155.04 155.34 155.63 156.58 156.77 157.02 157.31 157.61
9 191.50 192.93 194.34 195.74 197.13 186.86 186.93 187.06 187.24 187.46
10 195.71 196.98 198.24 199.48 200.71 201.92 202.56 203.04 203.44 203.81
Table 7
Effects of Q and K on frequency parameters 2; (by/t = 25, by/l = 0.5, « = 0.6, f = 60°, ¢ = 0°, X; = 1.0)
K =0° K = 60°
Q=00 Q=10 Q=20 Q=30 Q=40 Q=00 Q=10 Q=20 Q=30 Q=40
12.123 13.315 16.361 20.411 24.952 7.1755 8.9381 12.716 17.095 21.670

23.165 24.320 27.450 31.926 37.221 25.641 27.169 30.363 33.442 36.623
55.453 56.698 60.292 65.864 72.968 48.265 47.352 47.480 50.703 56.710
64.882 66.456 70.854 76.794 78.110 69.549 71.158 74.177 77.484 81.269
79.516 79.468 79.376 79.903 86.563 102.47 101.44 99.895 98.550 99.137
120.18 122.25 127.24 134.52 143.87 117.47 116.83 116.83 119.39 126.25
120.97 122.58 128.17 137.33 148.99 134.90 135.50 136.57 138.53 143.11
154.20 154.74 156.34 158.93 162.47 156.79 156.77 158.01 160.37 163.60
190.53 192.93 199.91 211.00 219.02 187.17 189.93 187.32 190.00 197.11
0 194.91 196.98 202.95 211.88 225.57 201.24 202.56 203.82 206.24 212.41

— 0 00 O\ LN AW
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The effect of the K on the first frequency parameter A of rotating conical shells shows monotonous
performance and the variations of 4 with the K are little larger for lower modes than for higher ones. There
is an obvious phenomenon for rotating conical shells subjected twist deformation that the number of it-
erative calculation increases rapidly until the first ten convergent frequency parameters A can be obtained,
which may be that the centrifugal force leads the twisted and open conical shells to deform against the
twisted deformation.

4. Conclusions

A numerical method for free vibration analysis of rotating twisted and open conical shells is proposed
based on the study of non-rotating twisted and open conical shells, where a non-linear strain—displacement
relationship of the conical shells is adopted on the thin shell theory. There are two processes in this analysis
method, first, the centrifugal force induced by rotating at a constant angular velocity is considered and the
initial deformation and the initial stress resultants are obtained by the principle of virtual work for steady
deformation. Second, under the conditions of the initial deformation and the initial stress resultants an
energy equilibrium of equation for free vibration is presented by the principle of virtual work. The Ray-
leigh—Ritz procedure is used with two-dimensional polynomials as admissible displacement functions in the
method. The effects of the parameters such as the twist angle, the subtended angle, the setting angle, the
tapered ratio, and the radius and the angular velocity of a rotating disc on the vibration characteristics of
conical shells are investigated.

It is known that the parameters of a rotating system have different influence on the vibration of rotating
twisted and open conical shells. The subtended angle and the rotating radius increasing leads all of the
frequency parameters to increase, there is an increasing tendency for the frequency parameters with the
tapered ratio decreasing, the effect of the twist angle is complicated except the first frequency parameter
shows monotonous performance, and the effects of the angular velocity and the setting angle also can be
seen.

Acknowledgements

An author (X.X. Hu) is grateful to the Japan Society for the Promotion of Science for providing a
fellowship in Nagasaki University, Japan, and thankful to Professor T. Tsuiji (who worked in Faculty of
Engineering, Nagasaki University, Japan and was retired in 1999) for the researches on shells.

Appendix A

The variables used in this paper are defined as the following,

f=a,sin0 —k(acosO —e), h=a,cos0—e,+kasin0, p=fsin0+hcos, g=1+p’

q=fcosO—hsin0, dy=p,+kpy, dy=ap,—peq, m (A1)
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Appendix B

The non-zero elements in matrix G are

PpPo Do
o), G = Ll Lol G = —‘I’,(CO)a

X ag ag X

G1,1 = 1, G1,2 =—=, G1,3 :Pp,x _’_&
4 4

4
a
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qd 50 ds 1 ap 1 Pxq
Ghn=—"-7-9o Gpn=—"—"—, Gyy=—|1- , Gup=——|K+ ,
b a\/g * b Zlg\/§7 2 a\/g g 22 a\/g g

_ _ PP\ Paim Do Pod
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' azg\/E( ' ' g ag g ' a’g
2q pds  m 1 __ pqds am_
Gro==—", Gro==———0Y Gy=-——|a.q—aq.+ppo+qq9+—"— | +=——=0Y,
29 ag 2,10 i B : g , : . ayg
d> P. Kpy 1 Kq
G = G =5 3> = _—Yu G =T = =)
2,12 —— 34 ) 3,5 2g 37 ag e 3 282
1 pds 1 _ _ | apqd
10 =—>——=(29 —po), Gii10=—"5—7, G3jn=—=—=|a.q—aq,— Kaqy+ )
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q a, K _o 1 1 0) 1 o 1
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42 =20 43 a +\/§ 0 45 == 4.6 a\g ) 4,11 2 %0 4,12 N
Poq 1 2% 1 _ _ _ Km _ o)
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G~ P pd  a, = P P - pds Gt = pqds
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ag’\ g a a’g\/g a’g\/g ag’\/g a’g’\/g
q V8 7 1 Pxgo . K 20 1
G =—, G72:T(1__>7 732—_—<axq—aqx>+—<15 +—@7, Gra=—1,
N3 a g a./g N7 3
- _ ___ P Po (0)_L O Gy = @ G _lq;()_i(pw)
7,5 ,\/_, 76 &\/§+Zzg 0 ayg ¥ 7,10 Nz 0 T =@ N 0 s



6134 X.X. Hu et al. | International Journal of Solids and Structures 39 (2002) 6121-6134

2 2 [ 2pp? - 1 2
Gsa=—, Ggs= —%, 8,6 = =3 Lea, | —m Q‘I’g)) —— o), Gs; :_2_61’
ag a‘g ag\ g ag a,/g a’\/g
2 2ppoy M) 2 PP.oq (10 4 0
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a,/g ag\y2 g ' AN g a* ag’
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